血压(BP)是心血管疾病和中风最有影响力的生物标志物之一;因此,需要定期监测以诊断和预防医疗并发症的任何出现。目前携带的携带BP监测的无齿状方法,虽然是非侵入性和不引人注目的,涉及围绕指尖光肌谱(PPG)信号的显式特征工程。为了规避这一点,我们提出了一种端到端的深度学习解决方案,BP-Net,它使用PPG波形来估计通过中间连续动脉BP来估计收缩压BP(SBP),平均压力(MAP)和舒张压BP(DBP) (ABP)波形。根据英国高血压协会(BHS)标准的条款,BP-Net为SBP估计实现了DBP和地图估计和B级的A级。 BP-Net还满足了医疗仪器(AAMI)标准的推进和地图估计,分别实现了5.16mmHg和2.89mmHg的平均误差(MAE),分别用于SBP和DBP。此外,我们通过在Raspberry PI 4设备上部署BP-Net来建立我们的方法的无处不在的潜力,并为我们的模型实现4.25毫秒的推理时间来将PPG波形转换为ABP波形。
translated by 谷歌翻译
心房颤动(AF)是全球最普遍的心律失常,其中2%的人口受影响。它与增加的中风,心力衰竭和其他心脏相关并发症的风险有关。监测风险的个体和检测无症状AF可能导致相当大的公共卫生益处,因为无误的人可以采取预防措施的生活方式改变。随着可穿戴设备的增加,个性化的医疗保健将越来越多。这些个性化医疗保健解决方案需要准确地分类生物信号,同时计算廉价。通过推断设备,我们避免基于云和网络连接依赖性等基于云的系统固有的问题。我们提出了一种有效的管道,用于实时心房颤动检测,精度高精度,可在超边缘设备中部署。本研究中采用的特征工程旨在优化所拟议的管道中使用的资源有效的分类器,该分类器能够以每单纯折衷的内存足迹以10 ^ 5倍型号优惠。分类准确性2%。我们还获得了更高的准确性约为6%,同时消耗403 $ \ times $较小的内存,与以前的最先进的(SOA)嵌入式实现相比为5.2 $ \ times $。
translated by 谷歌翻译
假新闻是制作作为真实的信息,有意欺骗读者。最近,依靠社交媒体的人民币为新闻消费的人数显着增加。由于这种快速增加,错误信息的不利影响会影响更广泛的受众。由于人们对这种欺骗性的假新闻的脆弱性增加,在早期阶段检测错误信息的可靠技术是必要的。因此,作者提出了一种基于图形的基于图形的框架社会图,其具有多头关注和发布者信息和新闻统计网络(SOMPS-Net),包括两个组件 - 社交交互图(SIG)和发布者和新闻统计信息(PNS)。假设模型在HealthStory DataSet上进行了实验,并在包括癌症,阿尔茨海默,妇产科和营养等各种医疗主题上推广。 Somps-Net明显优于其他基于现实的图表的模型,在HealthStory上实验17.1%。此外,早期检测的实验表明,Somps-Net预测的假新闻文章在其广播仅需8小时内为79%确定。因此,这项工作的贡献奠定了在早期阶段捕获多种医疗主题的假健康新闻的基础。
translated by 谷歌翻译
Curated knowledge graphs encode domain expertise and improve the performance of recommendation, segmentation, ad targeting, and other machine learning systems in several domains. As new concepts emerge in a domain, knowledge graphs must be expanded to preserve machine learning performance. Manually expanding knowledge graphs, however, is infeasible at scale. In this work, we propose a method for knowledge graph expansion with humans-in-the-loop. Concretely, given a knowledge graph, our method predicts the "parents" of new concepts to be added to this graph for further verification by human experts. We show that our method is both accurate and provably "human-friendly". Specifically, we prove that our method predicts parents that are "near" concepts' true parents in the knowledge graph, even when the predictions are incorrect. We then show, with a controlled experiment, that satisfying this property increases both the speed and the accuracy of the human-algorithm collaboration. We further evaluate our method on a knowledge graph from Pinterest and show that it outperforms competing methods on both accuracy and human-friendliness. Upon deployment in production at Pinterest, our method reduced the time needed for knowledge graph expansion by ~400% (compared to manual expansion), and contributed to a subsequent increase in ad revenue of 20%.
translated by 谷歌翻译
We study the problem of finding elements in the intersection of an arbitrary conic variety in $\mathbb{F}^n$ with a given linear subspace (where $\mathbb{F}$ can be the real or complex field). This problem captures a rich family of algorithmic problems under different choices of the variety. The special case of the variety consisting of rank-1 matrices already has strong connections to central problems in different areas like quantum information theory and tensor decompositions. This problem is known to be NP-hard in the worst-case, even for the variety of rank-1 matrices. Surprisingly, despite these hardness results we give efficient algorithms that solve this problem for "typical" subspaces. Here, the subspace $U \subseteq \mathbb{F}^n$ is chosen generically of a certain dimension, potentially with some generic elements of the variety contained in it. Our main algorithmic result is a polynomial time algorithm that recovers all the elements of $U$ that lie in the variety, under some mild non-degeneracy assumptions on the variety. As corollaries, we obtain the following results: $\bullet$ Uniqueness results and polynomial time algorithms for generic instances of a broad class of low-rank decomposition problems that go beyond tensor decompositions. Here, we recover a decomposition of the form $\sum_{i=1}^R v_i \otimes w_i$, where the $v_i$ are elements of the given variety $X$. This implies new algorithmic results even in the special case of tensor decompositions. $\bullet$ Polynomial time algorithms for several entangled subspaces problems in quantum entanglement, including determining $r$-entanglement, complete entanglement, and genuine entanglement of a subspace. While all of these problems are NP-hard in the worst case, our algorithm solves them in polynomial time for generic subspaces of dimension up to a constant multiple of the maximum possible.
translated by 谷歌翻译
Graph neural networks have achieved significant success in representation learning. However, the performance gains come at a cost; acquiring comprehensive labeled data for training can be prohibitively expensive. Active learning mitigates this issue by searching the unexplored data space and prioritizing the selection of data to maximize model's performance gain. In this paper, we propose a novel method SMARTQUERY, a framework to learn a graph neural network with very few labeled nodes using a hybrid uncertainty reduction function. This is achieved using two key steps: (a) design a multi-stage active graph learning framework by exploiting diverse explicit graph information and (b) introduce label propagation to efficiently exploit known labels to assess the implicit embedding information. Using a comprehensive set of experiments on three network datasets, we demonstrate the competitive performance of our method against state-of-the-arts on very few labeled data (up to 5 labeled nodes per class).
translated by 谷歌翻译
Explainability has been widely stated as a cornerstone of the responsible and trustworthy use of machine learning models. With the ubiquitous use of Deep Neural Network (DNN) models expanding to risk-sensitive and safety-critical domains, many methods have been proposed to explain the decisions of these models. Recent years have also seen concerted efforts that have shown how such explanations can be distorted (attacked) by minor input perturbations. While there have been many surveys that review explainability methods themselves, there has been no effort hitherto to assimilate the different methods and metrics proposed to study the robustness of explanations of DNN models. In this work, we present a comprehensive survey of methods that study, understand, attack, and defend explanations of DNN models. We also present a detailed review of different metrics used to evaluate explanation methods, as well as describe attributional attack and defense methods. We conclude with lessons and take-aways for the community towards ensuring robust explanations of DNN model predictions.
translated by 谷歌翻译
Estimating treatment effects from observational data is a central problem in causal inference. Methods to solve this problem exploit inductive biases and heuristics from causal inference to design multi-head neural network architectures and regularizers. In this work, we propose to use neurosymbolic program synthesis, a data-efficient, and interpretable technique, to solve the treatment effect estimation problem. We theoretically show that neurosymbolic programming can solve the treatment effect estimation problem. By designing a Domain Specific Language (DSL) for treatment effect estimation problem based on the inductive biases used in literature, we argue that neurosymbolic programming is a better alternative to treatment effect estimation than traditional methods. Our empirical study reveals that our method, which implicitly encodes inductive biases in a DSL, achieves better performance on benchmark datasets than the state-of-the-art methods.
translated by 谷歌翻译
A machine learning model, under the influence of observed or unobserved confounders in the training data, can learn spurious correlations and fail to generalize when deployed. For image classifiers, augmenting a training dataset using counterfactual examples has been empirically shown to break spurious correlations. However, the counterfactual generation task itself becomes more difficult as the level of confounding increases. Existing methods for counterfactual generation under confounding consider a fixed set of interventions (e.g., texture, rotation) and are not flexible enough to capture diverse data-generating processes. Given a causal generative process, we formally characterize the adverse effects of confounding on any downstream tasks and show that the correlation between generative factors (attributes) can be used to quantitatively measure confounding between generative factors. To minimize such correlation, we propose a counterfactual generation method that learns to modify the value of any attribute in an image and generate new images given a set of observed attributes, even when the dataset is highly confounded. These counterfactual images are then used to regularize the downstream classifier such that the learned representations are the same across various generative factors conditioned on the class label. Our method is computationally efficient, simple to implement, and works well for any number of generative factors and confounding variables. Our experimental results on both synthetic (MNIST variants) and real-world (CelebA) datasets show the usefulness of our approach.
translated by 谷歌翻译
我们考虑了由法院诉讼中的电子发现诸如诸如e-Dissoververy的申请激励的分类的多方协议。我们确定一项协议,该协议保证请求方收到所有响应文件,而发送方揭示了证明已收到所有响应文件所必需的无响应文件的最低金额。该协议可以嵌入到机器学习框架中,该框架可以实现积分的自动标签,并且由此产生的多方协议等同于标准的一方分类问题(如果一方分类问题满足自然的独立性,替代物业)。我们的正式保证专注于有正确分配文档的线性分类器的情况。
translated by 谷歌翻译